Haw We Bulll Our Roart Native App - Enginearing @ Housing - Medium

sid jain { Foilow }

Buildivig (mostly) useful things with code, hitpsi/iyuppi.es

How We Built Our React Native App

heus g comrlapos

ast year we Jaunched our PWA with an aim w improve the experience
L of our ugers on slow and inconsistent network connections. {t was the
first step towards the quality of the products we strive for. We received a
very positive respanse frons the commumity as well as oarr cusromers and
wante ta replicate the same success for our mobite application teo.

An ideal maebile appiication shouid be an extension
of the mobile web instead of being a replacement.

Challenges

= We are building experiences on 3 different platforms, namely:
Android, i08 and the web (deskiup and mobile).

+ This means duplication of business logic across 4 codebases, which
is not the best thing to do if you go by DRY.

« Iralso means introducing new features or modifying existing
features requires making the necessary changes across 4 separate
codebases. This is not scalable atall and the platforms would soon
end up being out of syne.

Finally, we would have to build and straregically expand 3 separate
teams of developers for each of the 3 platforms.

Objectives

To overcome these challenges, we decided to place our bets on the newly
emerging breed of cross-pladform native apps built with a modern
frontend stack in JavaScript. We began implementing the apps with the
Tollowing main objecuives:

Although Uhe apps would be writien in JavaScript, they shoulid not
compromise on the experience and responsiveness that users
associate with ‘native’ apps. In simpler words, if you're the user, the
app should feel just like any other nadve app on the App Store ar
Play Stare.

* The app should rense as much code as passible across Android and
08, This would be in line with the prindple of DRY. It would also
imply that maintaining the code is far easier and
adding/modliying/removing features means touching the
minimum number of files possible.

* Last but not least, the stack used should be familiar to our team of
product engineers for the web and the dependence on platform
specific native developers should be reduced. This is also in line
with increasing the bus factar at Housing.

bt

it

W brilt o (st ralive app SARGASHI AL

¥ Golo %&3

ege i

Ian Stewart

oo We Huilt D Kaac® Resfive ApR beginesring % Kousieg MA=dinm

Pioen Gzn
o ezvess

-
R g ook

Stack

react-navigation—still in its early days but it solves the much
debated navigation issue in a declarative manner using the
Animared API. It also fits well inta our redux based state
management system since it’s a purely J8 based solution. | lowever,
we are investigaring into other narive and hybrid navigation
solutions as well.

redux-observable—the JS ecosystern is sl figuring the best
solution to async state management but in the end, it is more ofa
‘to each his own’ problem. We decided to use redux-chservable
because it helps us isolate side effects nicely and bandle them with
the fve power RiJS This af h also allows us
o test our side-effects handling code in an isolated manner.

immutable—we faced nasty and hard to find bugs on previous
platforms which arose from mutations caused in our reducers. Ta
mitigare this issue for once and for all, we decided to use immutable
data srructures throughout the app. This was made possible by a
custom reducer factory which converts between immutable and
vanilla J§ data structures.

ramda—as far as possible, we made it a point to code in a
Tunetionad, declarative paradigm via pure funodus which handle
mnost of our business logic. Ramda has been replaceable fur us in
thatregard.

reduyx-petsist—Unlike web apps, native apps have a notion of
affline mode and persisted state. This library alang with yedwx-
persist-migrate gracefully salved this problem with a backing
AsyncBorage layer.

Tooling

Jonking

Besides the usuat suspects—yarn, prafsier, gslint and husky, we depend
on the following tools as well:

Styinguitle {Conyistent across Android and 1051

— it provides excellent support for developing isolated

storyl
native comporents. As a resul, we were able to code our Ul
sasa ing of our design guide. We are

looking inta deploying it internally so that designers have access to

ac

PageZofs

Ian Stewart

How wa Bull Gur React Native App - Englepering @ Housing -~ Madium

actual components as well.

codepush—this is one arca where react native apps really shine.
We use codepush for releasing unahrosive over rhe aie updates ro
wuar users while completcly owning the roliowt peicemages and
arget versions.

fastiane ing different envil (staging,
development, preduction} and automaring our builds proved to be
a breeze with fastlane. We exposed a parameterized build
dashboard on oarr internal

from app secrets, code signing,

Cl which manages everything
Elightand Crashiytics Beta
uploads, registering devices for internal test builds, releasing OTA
updates through codepush erc.

Auturated Ed tu End Tests -1 Delox

jest and detox-—this combination resulted in a delightful testing
pladorm fur ous app. Jest proved e be slighuy cumbersome o sel
up lur reactpative given the faut thet we badio write muchks for
native modules, but it was worth the effort. Detox by the folks at
Wix Engineering simplified the end-to-end testing story for us.

1eact-native apps sometime back, The new SDK enriches error
reports with a lot of useful device specific data and provides holistic
reports with both native and JS stack traces.

More than 90% of the app’s source code is in
JavaScript while not comprornising on performance
and quality.

Learnings

React Native is a relatively young platform. The community around it is
still deliberating on best practices and the right way to do eertain things.

As a starting point, however, the official docs ate the best resource we

have ecome across. TTere are some things we Tearnt alang the way:

InteractionManager—This is your best friend when it comes ta
perf. There has been a considerable effort by the community te
move expensive things te Tun on nadve threads since JS is single
threaded. There are times when you need to do expensive stuff in
JS without affecting the perf of your animations/transitions/user
interactions. IntetactionManager provides a nice scheduling AP vo
defer this expensive stuff until after said
animations/transitions/inreractions have complered.

requestAnimationFrame—This one is horrowed from the web and
warks identically. A particular use case is the ripple effect on
Android devices. The usual approach of using
a TouchableNativeFeedback with anapt onPress handler does
not always work here, At times, you might not see the ripple.
Instead, if you wrap your onPress handlerina

requestan imationf rame: block, you'll notice the animations are
visible perfectly.

MessageQueue—React Native works by commuaicating berween
theJS and native realms over a bridge. As a result, there is constant
chit-chat over this bridge which can affect performance adversely if
not moderated properly. The ‘spy method on Nessagefueue ,as
the narmne suggest, lets you spy on this chit-chat and see what's
being sent across. This might help you understand what's actually
happening underneath and improve performance.

w3 Duilt avr ras eativn App SRR FATIAN

—

'\Q Q{,Qo(f“’\“e’ -\5

tle & soeth

Eaga X ik

Ian Stewart

T WGl s Kaant RTRve App FRgintening O Hoasig Mrdiom

HessageQueue. spy {true)

setNativeProps— From the official docs—* setNativePeaps is the
React Native equivalent to setting properties directly on a DOM
nade”, At times, for reasons only known to vou, you might want
manipeddte the underlying native view Uit backs your JS view
while shori-cireujting the react render cycle. We used thisonlyin a
couple of places because everything else just did not work well
encugh. Avaid using it or use it very wisely if you must.

Structuring-—From the get go, we followed a simple organization
3

structure for aur repo. Wi our dimb UT¢
o suclul Views: S6ite Tanagemont wasellt tilen carc ol mour
., eph o e observed that randomly side-
effect generating code becomes the bottleneck in keeping our
codebase performant and restable. Gur approach with redux-
observable helped us mitigate some of those pains, Consider the
following example:

cxport default function lacalatySelsczlaction$, store,
actinng
+=2{ 'LOCAL ITY_AUTOCOMPLETE |

LanbiounceTioe(150)

Lgistang tUat iSaangaad{)
LswitehMap (({ payload: { text, cursor } }} = {
return ajax
LRG0

*${api.searchSuggest}Scursor=s{cursor}sstrin

Trpi®)

({ respunse 3} - {{
type: 'LOCALITY_SUGGEST',
payload: { data: response }

m

.catchlerror ==
Observable.:7({

type: 'LCCALITY_SUGGEST',
payload: { error },
errgr

)2l

3
¥

incalitySuggest js hested with & by GitHub view raw

We were able to contain most of the side-effect code in a single funceion
racher Chian pigyy-backing on componcent (lecydle methods, Also, we
injected che side-effect making dependency— ajax. in this case, into
the function itself. This can be replaced by something that just mocks the
network requests ina test environment,

Rexlux Midkdleware—Since the entire app state lives In redux
including navigation, redux middk become indi ble in
executing code in response to actions. In our case, we delegated the
analytics (screen iracking), logging, error reporting, modifying the
deviee stasus bar and memory management to ficdicated

Srtdunt

middteware. This effectively re s this code fram i
views and keeps them lean. Here's an example that switches
becween & dark or light status bar on i0S based on the current

BCTEER;

con.t statusBarMiddlensre - ({ getState }) -+ next ==
1% {i0bject.values(NavigationActions). inc Wikes{actio

ratyen e [action)

Y currentScreen = entiostoName (ge

const result = nextlaction)
const pextScreen @ getturrentfioytelame{zetStars(). ro

- eurrentScreen AL Platform.C5 ===

1t (nextScreen !
setSty leForfoute(nextsereen)

b

returi result

¢ Ly Githug

Build Pipeline

e Lneg o\id\‘é

Whexedon, o sy, dasg
Cg?‘(o Lee b *

Page 40f 8

Ian Stewart

Hew We BUin Our Renct Nalive App - Erginsering @ Housing - Methim

Jenkins

% OTA

Buid Tineiine

The oificial dots provide a pletburd of msight into the APLand Uie
platform itself. In the end, however, you need to deploy your new shiny
app. This also involves challenges like maintaining multiple
environments for testing and staging, incorporating different credentials
inan unabtrusive manner, generating release notes and notifying all
kehold d testers and desi). After
experimenting and struggling with a bunch of approaches, we moved to

Fastlane to automate this entire process. Following is an abridged

versian of aur heta release eyele an iDS:

desc "Submit a new Beta Build to Crashlytics'
lane :beta tc |options|

automatic_code signing(
path: "housing.xcodeproj",
use_sutomatic_signing: true

)

register_devices{devices Yile: "./devices.txi")

match{
L= Vdeselopeent”,

force_for naw_devices: trus

humanabte_build_number{update: true)
gym(
scheme: “housing",
clean: trus
crashlyticst
e UREIXRNYC,
build_secret: "XXXXXXXX",
crashlytics_path: "./Pods/Crashlytics”,
emails: user_email,
groups: “coders,ga,

nutes: optlans &% options[:notes] 7 options(inot
: "Branch #{yit_branch} built by #{user_email}
commits_count: shi'git cherry beta | we -1"}

date_format; “short”,

E =cyrers Paxe lude marges”

D

1

release(
bundle_identifier: “XXXXXXX",

sentry_aorganisation: "housing”,

sentry_app_name: "“housing-app-staging",
deployment_name: “Staging",
targst_versian: "1.8"
H
slack{
slack_url: "https://hooks.slack.com/services/XXX
payload: {
"Build Number” => humanable_build_number,
"Built By" => user email

)
add_git_tag{

e ffmeokim samengineesing bousinglbaw we bidh aor

Tage b ot b

Ian Stewart

aw W Bt Gt Rnats NTv 3pp Faginacring B Rausing Madim

grouping: "10s",

prefix: v,

build_number: humanable_build_number
)

and

crashlytics.rb hosted with @ by GitHuk view raw

This picee of code handies cotle-siymny, regisiering devices Lor wsting,
incrementing build numbers, buildny (he app, uplvading itto
Crashlytics Beta, generating release notes, releasing it on code-push and
uploading the sousce-maps to sentry, notifying on a slack channel and
finally adding a release tag on GitHub. You can potentizlly do anything
that pertains to building here. This code sits beside the main application
code. Bince the CI pulls in a fresh version of our repo before each build, it
is ridiculously easy to modify the build pipeline without breaking the CI.

Pro-Tips

§ Read the docs as well as the release notes.
2. yam start — —reset-cache — for when you installed e/ 0“»76

something and it does not work/can’t be found.

3, maslaative-debomr—The standalone app Gased on official
debugyger of Readd Native, and includes React Inspecior / Redus bt
— & OCOMNEN

4. Make the bundled Perf Menitor your best friend.

"

. Always test on a real device.

4. Knowing Reacl is a pre-requisite.

Footnote

If this post got you excited about the kind of worlc we’te doing here,
we're hiring. Find us on Twitter @HousingEnge.

Siddharth, Bhavir, Ritesh, Vikas, Rahul, Amandeep and Dron worked in

slecharth, bhavie, fitesh, Vikas,
the React Narve Apps Team. Rohit and Harish handied QAL

Disclaimer: We don’t advocate for any of the tools, libraries, coding practices
or softwarz devel hilosophi d here. You are welcome 1o
read, learn, aceept, rejece and critique however you see fit.

uit PP 5e Pege 8ol 6

Ian Stewart

